GEI Administration Control Panel


June 19, 2014, 7:49 a.m. ET

http://online.wsj.com/article/PR-CO-20140619-905335.html

GEI Global Energy Corp. Announces Board Expansion to Include School of Business Dean

FLINT, Mich., June 19, 2014 (GLOBE NEWSWIRE) -- GEI Global Energy Corp. (OTCBB:GEIG), a fuel cell electric power generation company, announced the expansion of its Board of Directors to include Dr. Cleamon Moorer, Dean of the School of Business at Madonna University, Livonia, Michigan. Dr. Moorer has held faculty positions while assuming leadership roles at Dominican University, Kettering University, Saint Xavier University, and Roosevelt University. His corporate experience stems from serving as a consultant, service executive, project manager and telecommunications engineer at (2) Fortune 100 Corporations: (General Motors and AT&T). He teaches international business, management, and strategic management.

Dr. Moorer, stated, "I am honored and extremely pleased to work with Dr. Berry and the GEI Global team. GEI Global will continue to develop as a driving force in the alternative energy and power systems industry, both domestically and abroad. I look forward to helping the Company in any way possible to reach their international customer base."

"GEI Global will certainly benefit from the wealth of academic expertise regarding International Business as GEI Global seeks to commercialize its fuel cell electric power generation technology for markets abroad such as Italy and Asia," stated GEI Global CEO, Dr. Berry. "Dr. Moorer will work with the Company to develop strategic initiatives for global deployment and to assist with understanding global cultures and aligning our international product focus. We are very fortunate to have the opportunity to benefit from the global mind-set and teachings of Dr. Moorer," concluded Berry.

About GEI Global Energy Corp.

GEI Global Energy Corp is a fuel cell electrical power generation company leveraging a menu of novel and innovative fuel cell power systems technologies to provide clean and inexpensive energy solutions for developing economies.

For more information regarding GEI GLOBAL's vision for an energy secure future, please click on the following video link: http://private.geiglobal.com/wp-content/uploads/2013/06/who-is-gei5.mp4.

Safe Harbor Statement

This report includes forward-looking statements covered by the Private Securities Litigation Reform Act of 1995. Because such statements deal with future events, they are subject to various risks and uncertainties and actual results for fiscal year 2012 and beyond could differ materially from the Company's current expectations. Forward-looking statements are identified by words such as "anticipates," "projects," "expects," "plans," "intends," "believes," "estimates," "targets," and other similar expressions that indicate trends and future events.

Factors that could cause the Company's results to differ materially from those expressed in forward-looking statements include, without limitation, variation in demand and acceptance of the Company's products and services, the frequency, magnitude and timing of paper and other raw-material-price changes, general business and economic conditions beyond the Company's control, timing of the completion and integration of acquisitions, the consequences of competitive factors in the marketplace including the ability to attract and retain customers, results of continuous improvement and other cost-containment strategies, and the Company's success in attracting and retaining key personnel. The Company undertakes no obligation to revise or update forward-looking statements as a result of new information, since these statements may no longer be accurate or timely.

You are here: Home Applications
  • Decrease font size
  • Default font size
  • Increase font size
  • default color
  • green color
  • blue color
Applications Print E-mail

Global Energy Innovations' (GEI) Fuel Cell Auxillary Power Unit is a one of a kind unit that is a flexible system that can be used for a broad range of applications due to its unique high temperature fuel cell stack, adaptable power electronics, and logistic fuel processor.  GEI's Smart Fuel Cell is the ultimate solution for the following applications.

Commercial Trucking

Commercial trucking APU power needs are increasing as better amenities are being added to sleeper cabins by the truck manufacturers to provide comfortable and sometimes luxurious interiors. Current APU power needs are approximately 2 to 6 kWe and are projected to go higher. Meeting this power demand through truck idling results in a significant cost estimated to be $5,700/truck/year with significant environmental emissions. Argonne National Laboratory estimates that 480,000 class 8 trucks alone generate 120 million pounds of NO, 202 million pounds of CO, and 9.6 million tons of CO2 annually; they also generate about 5.5 million pounds of particulate matter.

Current APU technologies to replace truck idling are based on diesel engine power generators, which, though better than truck idling, still possess a range of problems, including low efficiency and high noise and emissions.

We believe that fuel cell (FC)-based APU technologies are ideally suited for use in truck APUs because of their inherent benefits.

Telecommunications

Today’s telecommunications networks demand backup power solutions that provide highly reliable, cost-effective power for extended periods of time. As such the availability and reliability of backup power sources are a major concern not only in the United States, but also globally. With over 220,000 cell sites nationally and increasing cell and internet traffic, weather conditions and a fragile power infrastructure have caused blackouts across the country, and making customers and service providers look for backup power solutions that offer durability and flexibility at a reasonable cost. More recently, the realization that our power generation and distribution system may be vulnerable to interruptions due to terrorist and natural disasters has increased this need significantly. Why Traditional Solutions Won't Work  power use may not translate directly, or even easily, into stationary applications. Even on the automotive front, several key issues remain to be resolved, among them load response and the need for intelligent systems to charge and maintain the batteries. One other disadvantage may prove troublesome for wireless networks as well: lithium's high flammability. The risk of fire only adds to liability concerns and replacement costs. eight hours or less of backup power time, lower power needs, and where convenient access to hydrogen refueling is available. Six bottles of hydrogen provide eight hours of backup power for a 5 kW load. However, in situations requiring extended backup power times, higher power needs or in situations where hydrogen delivery is difficult or impossible, compressed hydrogen is a challenge. For example, 36 hydrogen cylinders are required to provide 48 hours of backup power for a 5 kW load. are required. In situations where hydrogen storage is difficult due to space and weight restrictions, liquid fuel combined with a fuel reformer is the most economical solution. Additionally, at remote installation locations such as telecommunications tower sites, hydrogen can prove to be difficult, bulky and heavy to store, and maintenance to re-supply industrial hydrogen cylinders in these remotes sites is not feasible. Reforming technologies and fuel cell products that incorporate reformers exist today that eliminate these obstacles and pave the way for even broader network applications.  According to a national U.S. survey commissioned by Emerson4, power outages resulting in downtime are common.

Military

The U.S. Army is transforming itself into a globally deployable force. The new force will need to operate with a smaller, more deployable logistics support system. Because much of the present logistics support systems exist to move fuel, improved battlefield fuel economy will help reduce logistics support requirements. These forces need new lightweight, fuel-efficient, air transportable equipment, with light, efficient logistics support systems.

 To offset the obvious reductions in armor and heavy weapons in this new force, new vehicles are being developed as part of the Future Combat Systems (FCS). The FCS is not a single vehicle or vehicle family, but rather a system of systems designed to use lighter weapons and faster vehicles more effectively to achieve the results of heavier forces. Two of the keys to this increased effectiveness are reducing the forces’ dependence on a heavy logistics support system and the development of an integrated battlefield data-sharing environment for U.S. forces, called “battlefield digitization.”

 Battlefield digitization has created new vehicle electric power demands. To be effective, digitization equipment must operate essentially all the time. A digitization suite includes items such as computers, digital radios, encryption systems, displays, identification friend-or-foe (IFF) and Global Positioning System (GPS) devices, with a combined power demand typically around one-kilowatt (kW), or 36 amps (A) on a military vehicle 28-volt system. This demand, when added to the power needed for personnel heaters, battery charging, sighting and detection equipment, often exceeds vehicle alternator capacities. The situation is made worse by the need for long waiting, or “silent watch” periods, during military operations in which a vehicle crew must minimize noise, thermal and other emissions for scouting or ambush. This effectively rules out running an engine.